Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 85(9): 2199-2206, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35994072

RESUMO

Tetrodotoxin (TTX, 1) is a potent voltage-gated sodium channel blocker detected in certain marine and terrestrial organisms. We report here a new TTX analogue, 9-epiTTX (2), and a TTX-related compound, Tb-242B (4), isolated from the pufferfish Takifugu flavipterus and Dichotomyctere ocellatus, respectively. NMR analysis suggested that 2 exists as a mixture of hemilactal and 10,8-lactone forms, whereas other reported TTX analogues are commonly present as an equilibrium mixture of hemilactal and 10,7-lactone forms. Compound 2 and TTX were confirmed not to convert to each other by incubation under neutral and acidic conditions at 37 °C for 24 h. Compound 4 was identified as the 9-epimer of Tb-242A (3), previously reported as a possible biosynthetic precursor of TTX. Compound 4 was partially converted to 3 by incubation in a neutral buffer at 37 °C for 7 days, whereas 3 was not converted to 4 under this condition. Compound 2 was detected in several TTX-containing marine animals and a newt. Mice injected with 600 ng of 2 by intraperitoneal injection did not show any adverse symptoms, suggesting that the C-9 configuration in TTX is critical for its biological activity. Based on the structures, 2 and 4 were predicted to be shunt products for TTX biosynthesis.


Assuntos
Takifugu , Tetraodontiformes , Tetrodotoxina , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Lactonas/química , Lactonas/isolamento & purificação , Camundongos , Tetrodotoxina/química , Tetrodotoxina/isolamento & purificação , Tetrodotoxina/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
2.
Mar Drugs ; 20(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35200683

RESUMO

The voltage-gated sodium channel subtype 1.2 (NaV1.2) is instrumental in the initiation of action potentials in the nervous system, making it a natural drug target for neurological diseases. Therefore, there is much pharmacological interest in finding blockers of NaV1.2 and improving their affinity and selectivity properties. An extensive family of peptide toxins from cone snails (conotoxins) block NaV channels, thus they provide natural templates for the design of drugs targeting NaV channels. Unfortunately, progress was hampered due to the absence of any NaV structures. The recent determination of cryo-EM structures for NaV channels has finally broken this impasse. Here, we use the NaV1.2 structure in complex with µ-conotoxin KIIIA (KIIIA) in computational studies with the aim of improving KIIIA's affinity and blocking capacity for NaV1.2. Only three KIIIA amino acid residues are available for mutation (S5, S6, and S13). After performing molecular modeling and simulations on NaV1.2-KIIIA complex, we have identified the S5R, S6D, and S13K mutations as the most promising for additional contacts. We estimate these contacts to boost the affinity of KIIIA for NaV1.2 from nanomole to picomole domain. Moreover, the KIIIA[S5R, S6D, S13K] analogue makes contacts with all four channel domains, thus enabling the complete blocking of the channel (KIIIA partially blocks as it has contacts with three domains). The proposed KIIIA analogue, once confirmed experimentally, may lead to novel anti-epileptic drugs.


Assuntos
Conotoxinas/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.2/efeitos dos fármacos , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Sequência de Aminoácidos , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Conotoxinas/química , Caramujo Conus , Desenho de Fármacos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
3.
J Ethnopharmacol ; 280: 114457, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329712

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Pain often causes a series of abnormal changes in physiology and psychology, which can lead to disease and even death. Drug therapy is the most basic and commonly used method for pain relief and management. Interestingly, at present, hundreds of traditional Chinese medicines have been reported to be used for pain relief, most of which are monomer preparations, which have been developed into new painkillers. Corydalis yanhusuo is a representative of one of these medicines and is available for pain relief. AIM OF THE STUDY: This study aims to determine the analgesic effect and the potential targets of the monomers derived from Corydalis yanhusuo, and to explore any possible associated cardiac risk factors. MATERIALS AND METHODS: In this study, four monomers derived from Corydalis yanhusuo (tetrahydropalmatine, corydaline, protopine, dehydrocorydaline) were tested in vivo, using the formalin-induced pain model to determine their analgesic properties. Their potential targets were also determined using whole cell patch clamp recordings and myocardial enzyme assays. RESULTS: The results showed that all monomers showed analgesic activity and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.7, which indicating that Nav1.7 might be involved in the analgesic mechanism of Corydalis yanhusuo. Protopine increased the level of creatine kinase-MB (CK-MB) and inhibited the peak currents, promoted the activation and inactivation phases of Nav1.5, indicating that Nav1.5 might be involved in the cardiac risk associated with protopine treatment. CONCLUSION: These data showed that tetrahydropalmatine produced the best analgesic effect and the lowest cardiac risk. Thus, voltage gated sodium channels (VGSCs) might be the main targets associated with Corydalis yanhusuo. This study, therefore, provides valuable information for future studies and use of traditional Chines medicines for the alleviation of pain.


Assuntos
Analgésicos/farmacologia , Corydalis/química , Medicamentos de Ervas Chinesas/envenenamento , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Alcaloides de Berberina/isolamento & purificação , Alcaloides de Berberina/farmacologia , Células CHO , Cricetulus , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Formaldeído , Camundongos , Dor/tratamento farmacológico , Técnicas de Patch-Clamp , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Naunyn Schmiedebergs Arch Pharmacol ; 394(5): 967-980, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33404688

RESUMO

Glycyrrhiza extract has been used for the treatment of oral and gastric ulcers, but the analgesic mechanism remains unknown. In the present study, we investigated the effects of isoliquiritigenin, an active ingredient of Glycyrrhiza, on Nav channels in vitro and nociceptive behaviors in vivo. In an autopatch-clamp study, isoliquiritigenin inhibited the currents of Nav1.1, Nav1.3, Nav1.6, Nav1.7, and Nav1.8 in a channel expression system. In small- and medium-sized cultured trigeminal ganglion neurons, the compound suppressed Nav currents in many neurons (78%) and Kv currents in all neurons, dose-dependently. In current-clamp mode, isoliquiritigenin blocked action potential generation in many neurons (64%), but it conversely accelerated action potential generation in the remaining neurons. The opposing effects on action potentials were reproduced in a computational simulation of a modified Hodgkin-Huxley-based model, based on the electrophysiological data. In behavioral experiments, local treatment with isoliquiritigenin suppressed nociceptive behaviors in response to oral ulcer development or nociceptive TRP channel agonists in the oral mucosa and hind paw. These results suggest that isoliquiritigenin exerts an analgesic effect predominantly via inhibitory action on Nav channels on sensory nociceptive fibers. This pharmacological mechanism indicates that isoliquiritigenin is useful for pain relief and provides scientific evidence for Glycyrrhiza at the ingredient level.


Assuntos
Analgésicos/farmacologia , Chalconas/farmacologia , Glycyrrhiza/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Potenciais de Ação/efeitos dos fármacos , Analgésicos/administração & dosagem , Analgésicos/isolamento & purificação , Animais , Comportamento Animal/efeitos dos fármacos , Chalconas/administração & dosagem , Chalconas/isolamento & purificação , Simulação por Computador , Relação Dose-Resposta a Droga , Masculino , Dor/tratamento farmacológico , Dor/patologia , Ratos , Ratos Wistar , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo
5.
Biochimie ; 176: 138-149, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32717411

RESUMO

Spider venoms, despite their toxicity, represent rich sources of pharmacologically active compounds with biotechnological potential. However, in view of the large diversity of the spider species, the full potential of their venom molecules is still far from being known. In this work, we report the purification and structural and functional characterization of GiTx1 (ß/κ-TRTX-Gi1a), the first toxin purified from the venom of the Brazilian tarantula spider Grammostola iheringi. GiTx1 was purified by chromatography, completely sequenced through automated Edman degradation and tandem mass spectrometry and its structure was predicted by molecular modeling. GiTx1 has a MW of 3.585 Da, with the following amino acid sequence: SCQKWMWTCDQKRPCCEDMVCKLWCKIIK. Pharmacological activity of GiTx1 was characterized by electrophysiology using whole-cell patch clamp on dorsal root ganglia neurons (DRG) and two-electrode voltage-clamp on voltage-gated sodium and potassium channels subtypes expressed in Xenopus laevis oocytes. GiTx1, at 2 µM, caused a partial block of inward (∼40%) and outward (∼20%) currents in DRG cells, blocked rNav1.2, rNav1.4 and mNav1.6 and had a significant effect on VdNav, an arachnid sodium channel isoform. IC50 values of 156.39 ± 14.90 nM for Nav1.6 and 124.05 ± 12.99 nM for VdNav, were obtained. In addition, this toxin was active on rKv4.3 and hERG potassium channels, but not Shaker IR or rKv2.1 potassium channels. In summary, GiTx1 is a promiscuous toxin with multiple effects on different types of ion channels.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Venenos de Aranha , Aranhas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Moscas Domésticas , Humanos , Camundongos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Domínios Proteicos , Ratos , Ratos Wistar , Venenos de Aranha/química , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/toxicidade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Canais de Sódio Disparados por Voltagem/química
6.
J Ethnopharmacol ; 259: 112963, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32439405

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Goshajinkigan (GJG), a traditional Japanese Kampo formula, has been shown to exhibit several pharmacological actions, including antinociceptive effects. Processed aconite root (PA), which is considered to be an active ingredient of GJG, has also been demonstrated to have an ameliorative effect on pain, such as diabetic peripheral neuropathic pain. We recently identified neoline as the active ingredient of both GJG and PA that is responsible for its effects against oxaliplatin-induced neuropathic pain in mice. AIM OF THE STUDY: In the present study, we investigated whether GJG, PA, and neoline could inhibit Nav1.7 voltage-gated sodium channel (VGSC) current and whether neoline could ameliorate mechanical hyperalgesia in diabetic mice. MATERIALS AND METHODS: To assess the electrophysiological properties of GJG extract formulation, powdered PA, and neoline on Nav1.7 VGSCs, whole-cell patch clamp recording was performed using human HEK293 cells expressing Nav1.7 VGSCs. In addition, the ameliorative effects of neoline on diabetic peripheral neuropathic pain were evaluated using the von Frey test in streptozotocin (STZ)-induced diabetic model mice. RESULTS: GJG extract formulation significantly inhibited Nav1.7 VGSC peak current. Powdered PA also inhibited Nav1.7 VGSC peak current. Like GJG and PA, neoline could inhibit Nav1.7 VGSC current. When diabetic mice were treated with neoline by intraperitoneal acute administration, the mechanical threshold was increased in diabetic mice, but not in non-diabetic mice, in a behavioral study. CONCLUSION: These results suggest that neoline might be a novel active ingredient of GJG and PA that is one of responsible ingredients for ameliorating mechanical hyperalgesia in diabetes via the inhibition of Nav1.7 VGSC current at least.


Assuntos
Aconitina/análogos & derivados , Aconitum , Analgésicos/farmacologia , Neuropatias Diabéticas/prevenção & controle , Medicamentos de Ervas Chinesas/farmacologia , Hiperalgesia/prevenção & controle , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Raízes de Plantas , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Aconitina/isolamento & purificação , Aconitina/farmacologia , Aconitum/química , Analgésicos/isolamento & purificação , Animais , Comportamento Animal/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Células HEK293 , Humanos , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Potenciais da Membrana , Camundongos Endogâmicos ICR , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Limiar da Dor/efeitos dos fármacos , Raízes de Plantas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
7.
SLAS Discov ; 25(5): 434-446, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32292096

RESUMO

The voltage-gated sodium channel Nav1.7 is a genetically validated target for pain; pharmacological blockers are promising as a new class of nonaddictive therapeutics. The search for Nav1.7 subtype selective inhibitors requires a reliable, scalable, and sensitive assay. Previously, we developed an all-optical electrophysiology (Optopatch) Spiking HEK platform to study activity-dependent modulation of Nav1.7 in a format compatible with high-throughput screening. In this study, we benchmarked the Optopatch Spiking HEK assay with an existing validated automated electrophysiology assay on the IonWorks Barracuda (IWB) platform. In a pilot screen of 3520 compounds, which included compound plates from a random library as well as compound plates enriched for Nav1.7 inhibitors, the Optopatch Spiking HEK assay identified 174 hits, of which 143 were confirmed by IWB. The Optopatch Spiking HEK assay maintained the high reliability afforded by traditional fluorescent assays and further demonstrated comparable sensitivity to IWB measurements. We speculate that the Optopatch assay could provide an affordable high-throughput screening platform to identify novel Nav1.7 subtype selective inhibitors with diverse mechanisms of action, if coupled with a multiwell parallel optogenetic recording instrument.


Assuntos
Ensaios de Triagem em Larga Escala , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Técnicas de Patch-Clamp , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Animais , Células CHO , Cricetulus , Fenômenos Eletrofisiológicos , Eletrofisiologia , Células HEK293 , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/genética
8.
Sci Rep ; 9(1): 16890, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729429

RESUMO

Multiple voltage-gated Na+ (Nav) channelopathies can be ascribed to subtle changes in the Nav macromolecular complex. Fibroblast growth factor 14 (FGF14) is a functionally relevant component of the Nav1.6 channel complex, a causative link to spinocerebellar ataxia 27 (SCA27) and an emerging risk factor for neuropsychiatric disorders. Yet, how this protein:channel complex is regulated in the cell is still poorly understood. To search for key cellular pathways upstream of the FGF14:Nav1.6 complex, we have developed, miniaturized and optimized an in-cell assay in 384-well plates by stably reconstituting the FGF14:Nav1.6 complex using the split-luciferase complementation assay. We then conducted a high-throughput screening (HTS) of 267 FDA-approved compounds targeting known mediators of cellular signaling. Of the 65 hits initially detected, 24 were excluded based on counter-screening and cellular toxicity. Based on target analysis, potency and dose-response relationships, 5 compounds were subsequently repurchased for validation and confirmed as hits. Among those, the tyrosine kinase inhibitor lestaurtinib was highest ranked, exhibiting submicromolar inhibition of FGF14:Nav1.6 assembly. While providing evidence for a robust in-cell HTS platform that can be adapted to search for any channelopathy-associated regulatory proteins, these results lay the potential groundwork for repurposing cancer drugs for neuropsychopharmacology.


Assuntos
Antineoplásicos , Ensaios de Triagem em Larga Escala/métodos , Mapas de Interação de Proteínas/fisiologia , Agonistas do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Fatores de Crescimento de Fibroblastos/agonistas , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/química , Células HEK293 , Humanos , Complexos Multiproteicos/agonistas , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Canal de Sódio Disparado por Voltagem NAV1.6/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Ligação Proteica , Agonistas do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
9.
Toxins (Basel) ; 11(9)2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443554

RESUMO

Over the two last decades, venom toxins have been explored as alternatives to opioids to treat chronic debilitating pain. At present, approximately 20 potential analgesic toxins, mainly from spider venoms, are known to inhibit with high affinity the NaV1.7 subtype of voltage-gated sodium (NaV) channels, the most promising genetically validated antinociceptive target identified so far. The present study aimed to consolidate the development of phlotoxin 1 (PhlTx1), a 34-amino acid and 3-disulfide bridge peptide of a Phlogiellus genus spider, as an antinociceptive agent by improving its affinity and selectivity for the human (h) NaV1.7 subtype. The synthetic homologue of PhlTx1 was generated and equilibrated between two conformers on reverse-phase liquid chromatography and exhibited potent analgesic effects in a mouse model of NaV1.7-mediated pain. The effects of PhlTx1 and 8 successfully synthetized alanine-substituted variants were studied (by automated whole-cell patch-clamp electrophysiology) on cell lines stably overexpressing hNaV subtypes, as well as two cardiac targets, the hCaV1.2 and hKV11.1 subtypes of voltage-gated calcium (CaV) and potassium (KV) channels, respectively. PhlTx1 and D7A-PhlTx1 were shown to inhibit hNaV1.1-1.3 and 1.5-1.7 subtypes at hundred nanomolar concentrations, while their affinities for hNaV1.4 and 1.8, hCaV1.2 and hKV11.1 subtypes were over micromolar concentrations. Despite similar analgesic effects in the mouse model of NaV1.7-mediated pain and selectivity profiles, the affinity of D7A-PhlTx1 for the NaV1.7 subtype was at least five times higher than that of the wild-type peptide. Computational modelling was performed to deduce the 3D-structure of PhlTx1 and to suggest the amino acids involved in the efficiency of the molecule. In conclusion, the present structure-activity relationship study of PhlTx1 results in a low improved affinity of the molecule for the NaV1.7 subtype, but without any marked change in the molecule selectivity against the other studied ion channel subtypes. Further experiments are therefore necessary before considering the development of PhlTx1 or synthetic variants as antinociceptive drug candidates.


Assuntos
Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dobramento de Proteína , Aranhas , Relação Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
10.
Toxins (Basel) ; 11(6)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234412

RESUMO

Phlotoxin-1 (PhlTx1) is a peptide previously identified in tarantula venom (Phlogius species) that belongs to the inhibitory cysteine-knot (ICK) toxin family. Like many ICK-based spider toxins, the synthesis of PhlTx1 appears particularly challenging, mostly for obtaining appropriate folding and concomitant suitable disulfide bridge formation. Herein, we describe a procedure for the chemical synthesis and the directed sequential disulfide bridge formation of PhlTx1 that allows for a straightforward production of this challenging peptide. We also performed extensive functional testing of PhlTx1 on 31 ion channel types and identified the voltage-gated sodium (Nav) channel Nav1.7 as the main target of this toxin. Moreover, we compared PhlTx1 activity to 10 other spider toxin activities on an automated patch-clamp system with Chinese Hamster Ovary (CHO) cells expressing human Nav1.7. Performing these analyses in reproducible conditions allowed for classification according to the potency of the best natural Nav1.7 peptide blockers. Finally, subsequent in vivo testing revealed that intrathecal injection of PhlTx1 reduces the response of mice to formalin in both the acute pain and inflammation phase without signs of neurotoxicity. PhlTx1 is thus an interesting toxin to investigate Nav1.7 involvement in cellular excitability and pain.


Assuntos
Analgésicos/isolamento & purificação , Peptídeos/isolamento & purificação , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Células CHO , Cricetulus , Feminino , Formaldeído , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Oócitos , Dor/induzido quimicamente , Dor/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Dobramento de Proteína , Aranhas , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Xenopus laevis
11.
Acta Pharmacol Sin ; 40(7): 859-866, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30382183

RESUMO

Human genetic and pharmacological studies have demonstrated that voltage-gated sodium channels (VGSCs) are promising therapeutic targets for the treatment of pain. Spider venom contains many toxins that modulate the activity of VGSCs. To date, only 0.01% of such spider toxins has been explored, and thus there is a great potential for discovery of novel VGSC modulators as useful pharmacological tools or potential therapeutics. In the current study, we identified a novel peptide, µ-TRTX-Ca1a (Ca1a), in the venom of the tarantula Cyriopagopus albostriatus. This peptide consisted of 38 residues, including 6 cysteines, i.e. IFECSISCEIEKEGNGKKCKPKKCKGGWKCKFNICVKV. In HEK293T or ND7/23 cells expressing mammalian VGSCs, this peptide exhibited the strongest inhibitory activity on Nav1.7 (IC50 378 nM), followed by Nav1.6 (IC50 547 nM), Nav1.2 (IC50 728 nM), Nav1.3 (IC50 2.2 µM) and Nav1.4 (IC50 3.2 µM), and produced negligible inhibitory effect on Nav1.5, Nav1.8, and Nav1.9, even at high concentrations of up to 10 µM. Furthermore, this peptide did not significantly affect the activation and inactivation of Nav1.7. Using site-directed mutagenesis of Nav1.7 and Nav1.4, we revealed that its binding site was localized to the DIIS3-S4 linker region involving the D816 and E818 residues. In three different mouse models of pain, pretreatment with Cala (100, 200, 500 µg/kg) dose-dependently suppressed the nociceptive responses induced by formalin, acetic acid or heat. These results suggest that Ca1a is a novel neurotoxin against VGSCs and has a potential to be developed as a novel analgesic.


Assuntos
Analgésicos/farmacologia , Proteínas de Artrópodes/farmacologia , Neurotoxinas/farmacologia , Venenos de Aranha/farmacologia , Aranhas/química , Sequência de Aminoácidos , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Animais , Proteínas de Artrópodes/isolamento & purificação , Proteínas de Artrópodes/metabolismo , Linhagem Celular Tumoral , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neurônios/efeitos dos fármacos , Neurotoxinas/isolamento & purificação , Neurotoxinas/metabolismo , Periplaneta , Ligação Proteica , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
12.
Toxins (Basel) ; 10(10)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308978

RESUMO

Exploring the interaction of ligands with voltage-gated sodium channels (NaVs) has advanced our understanding of their pharmacology. Herein, we report the purification and characterization of a novel non-selective mammalian and bacterial NaVs toxin, JZTx-14, from the venom of the spider Chilobrachys jingzhao. This toxin potently inhibited the peak currents of mammalian NaV1.2⁻1.8 channels and the bacterial NaChBac channel with low IC50 values (<1 µM), and it mainly inhibited the fast inactivation of the NaV1.9 channel. Analysis of NaV1.5/NaV1.9 chimeric channel showed that the NaV1.5 domain II S3⁻4 loop is involved in toxin association. Kinetics data obtained from studying toxin⁻NaV1.2 channel interaction showed that JZTx-14 was a gating modifier that possibly trapped the channel in resting state; however, it differed from site 4 toxin HNTx-III by irreversibly blocking NaV currents and showing state-independent binding with the channel. JZTx-14 might stably bind to a conserved toxin pocket deep within the NaV1.2⁻1.8 domain II voltage sensor regardless of channel conformation change, and its effect on NaVs requires the toxin to trap the S3⁻4 loop in its resting state. For the NaChBac channel, JZTx-14 positively shifted its conductance-voltage (G⁻V) and steady-state inactivation relationships. An alanine scan analysis of the NaChBac S3⁻4 loop revealed that the 108th phenylalanine (F108) was the key residue determining the JZTx-14⁻NaChBac interaction. In summary, this study provided JZTx-14 with potent but promiscuous inhibitory activity on both the ancestor bacterial NaVs and the highly evolved descendant mammalian NaVs, and it is a useful probe to understand the pharmacology of NaVs.


Assuntos
Venenos de Aranha , Bloqueadores do Canal de Sódio Disparado por Voltagem , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/fisiologia , Linhagem Celular , Humanos , Camundongos , Ratos , Análise de Sequência de Proteína , Venenos de Aranha/química , Venenos de Aranha/isolamento & purificação , Venenos de Aranha/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia
13.
Biomed Pharmacother ; 101: 572-578, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29514130

RESUMO

Our previous work showed that polysaccharide isolated from Portulaca oleracea L. (POP) has an insulinotropic effect. The voltage-gated Na+ channel (VGSC) in the excitement phase plays an important role. This work aims to study the effect of POP on the voltage-gated Na+ channel current (INa) and its channel dynamic characteristics in insulin-secreting ß-cell line (INS-1) cells of rat. Our results revealed that POP can inhibit the amplitude of INa and improve cell survival in a concentration-dependent manner. POP concentration of 0.5 mg mL-1 reduced the amplitude of INa, suppressed the INa of steady-state activation, shifted the steady-state inactivation curves of INa to negative potentials, prolonged the time course of INa recovery from inactivation, and enhanced the activity-dependent attenuation of INa. Furthermore, 0.5 mg mL-1 POP or low concentration of tetrodotoxin (TTX, a VGSC-specific blocker) partially inhibited INa and also improved insulin synthesis and cell survival. Collectively, these results revealed that POP protects INS-1 cells and enhances the insulin synthesis in INS-1 cells, and the mechanism through the partial inhibition on INa channel is strongly recommended.


Assuntos
Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Polissacarídeos/farmacologia , Portulaca , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Insulina/metabolismo , Secreção de Insulina , Polissacarídeos/isolamento & purificação , Ratos , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
14.
Fitoterapia ; 122: 20-25, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28807716

RESUMO

Iritectol G, a novel iridal-type triterpenoid containing an uncommon tetrahydrofuran moiety, was isolated from the rhizomes of Iris tectorum. The structure was elucidated by comprehensive spectroscopic analysis. Iritectol G inhibited spontaneous and 4-aminopyridine-evoked calcium oscillations in primary cultured neocortical neurons with IC50 values of 8.2µM and 12.5µM, respectively. Further electrophysiological study demonstrated that iritectol G preferred to interact with inactivated state of voltage-gated sodium channel with an IC50 value of 7.0µM. These data demonstrated that iritectol G was a novel sodium channel inhibitor.


Assuntos
Anticonvulsivantes/farmacologia , Iris (Planta)/química , Neurônios/efeitos dos fármacos , Triterpenos/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Animais , Anticonvulsivantes/isolamento & purificação , Cálcio/metabolismo , Células Cultivadas , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neocórtex/citologia , Técnicas de Patch-Clamp , Rizoma/química , Triterpenos/isolamento & purificação , Veratridina , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/metabolismo
15.
PLoS One ; 12(8): e0183215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28854259

RESUMO

The pallid bat (Antrozous pallidus), a gleaning bat found in the western United States and Mexico, hunts a wide variety of ground-dwelling prey, including scorpions. Anecdotal evidence suggests that the pallid bat is resistant to scorpion venom, but no systematic study has been performed. Here we show with behavioral measures and direct injection of venom that the pallid bat is resistant to venom of the Arizona bark scorpion, Centruroides sculpturatus. Our results show that the pallid bat is stung multiple times during a hunt without any noticeable effect on behavior. In addition, direct injection of venom at mouse LD50 concentrations (1.5 mg/kg) has no effect on bat behavior. At the highest concentration tested (10 mg/kg), three out of four bats showed no effects. One of the four bats showed a transient effect suggesting that additional studies are required to identify potential regional variation in venom tolerance. Scorpion venom is a cocktail of toxins, some of which activate voltage-gated sodium ion channels, causing intense pain. Dorsal root ganglia (DRG) contain nociceptive neurons and are principal targets of scorpion venom toxins. To understand if mutations in specific ion channels contribute to venom resistance, a pallid bat DRG transcriptome was generated. As sodium channels are a major target of scorpion venom, we identified amino acid substitutions present in the pallid bat that may lead to venom resistance. Some of these substitutions are similar to corresponding amino acids in sodium channel isoforms responsible for reduced venom binding activity. The substitution found previously in the grasshopper mouse providing venom resistance to the bark scorpion is not present in the pallid bat, indicating a potentially novel mechanism for venom resistance in the bat that remains to be identified. Taken together, these results indicate that the pallid bat is resistant to venom of the bark scorpion and altered sodium ion channel function may partly underlie such resistance.


Assuntos
Substituição de Aminoácidos , Quirópteros/genética , Resistência à Doença/genética , Venenos de Escorpião/toxicidade , Escorpiões/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/toxicidade , Canais de Sódio Disparados por Voltagem/genética , Sequência de Aminoácidos , Animais , Quirópteros/imunologia , Comportamento Alimentar/fisiologia , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Expressão Gênica , Mutação , Comportamento Predatório/fisiologia , Picadas de Escorpião/genética , Picadas de Escorpião/imunologia , Picadas de Escorpião/prevenção & controle , Venenos de Escorpião/isolamento & purificação , Escorpiões/patogenicidade , Escorpiões/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcriptoma , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/metabolismo
16.
Br J Pharmacol ; 174(15): 2528-2544, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28542706

RESUMO

BACKGROUND AND PURPOSE: Naturally occurring dysfunction of voltage-gated sodium (NaV ) channels results in complex disorders such as chronic pain, making these channels an attractive target for new therapies. In the pursuit of novel NaV modulators, we investigated spider venoms for new inhibitors of NaV channels. EXPERIMENTAL APPROACH: We used high-throughput screens to identify a NaV modulator in venom of the spider Davus fasciatus. Further characterization of this venom peptide was undertaken using fluorescent and electrophysiological assays, molecular modelling and a rodent pain model. KEY RESULTS: We identified a potent NaV inhibitor named µ-TRTX-Df1a. This 34-residue peptide fully inhibited responses mediated by NaV 1.7 endogenously expressed in SH-SY5Y cells. Df1a also inhibited voltage-gated calcium (CaV 3) currents but had no activity against the voltage-gated potassium (KV 2) channel. The modelled structure of Df1a, which contains an inhibitor cystine knot motif, is reminiscent of the NaV channel toxin ProTx-I. Electrophysiology revealed that Df1a inhibits all NaV subtypes tested (hNaV 1.1-1.7). Df1a also slowed fast inactivation of NaV 1.1, NaV 1.3 and NaV 1.5 and modified the voltage-dependence of activation and inactivation of most of the NaV subtypes. Df1a preferentially binds to the domain II voltage-sensor and has additional interactions with the voltage sensors domains III and IV, which probably explains its modulatory features. Df1a was analgesic in vivo, reversing the spontaneous pain behaviours induced by the NaV activator OD1. CONCLUSION AND IMPLICATIONS: µ-TRTX-Df1a shows potential as a new molecule for the development of drugs to treat pain disorders mediated by voltage-gated ion channels.


Assuntos
Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente , Venenos de Escorpião/administração & dosagem , Aranhas , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
17.
Chin J Nat Med ; 14(9): 661-670, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27667511

RESUMO

The present study was designed to search for compounds with analgesic activity from the Schizophyllum commune (SC), which is widely consumed as edible and medicinal mushroom world. Thin layer chromatography (TLC), tosilica gel column chromatography, sephadex LH 20, and reverse-phase high performance liquid chromatography (RP-HPLC) were used to isolate and purify compounds from SC. Structural analysis of the isolated compounds was based on nuclear magnetic resonance (NMR). The effects of these compounds on voltage-gated sodium (NaV) channels were evaluated using patch clamp. The analgesic activity of these compounds was tested in two types of mouse pain models induced by noxious chemicals. Five phenolic acids identified from SC extracts in the present study included vanillic acid, m-hydroxybenzoic acid, o-hydroxybenzeneacetic acid, 3-hydroxy-5-methybenzoic acid, and p-hydroxybenzoic acid. They inhibited the activity of both tetrodotoxin-resistant (TTX-r) and tetrodotoxin-sensitive (TTX-s) NaV channels. All the compounds showed low selectivity on NaV channel subtypes. After intraperitoneal injection, three compounds of these compounds exerted analgesic activity in mice. In conclusion, phenolic acids identified in SC demonstrated analgesic activity, facilitating the mechanistic studies of SC in the treatment of neurasthenia.


Assuntos
Analgésicos/administração & dosagem , Hidroxibenzoatos/administração & dosagem , Neurastenia/tratamento farmacológico , Schizophyllum/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Canais de Sódio Disparados por Voltagem/metabolismo , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/isolamento & purificação , Camundongos , Neurastenia/genética , Neurastenia/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Sódio Disparados por Voltagem/genética
18.
Toxins (Basel) ; 7(7): 2494-513, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26134258

RESUMO

Voltage-gated sodium (NaV) channels are responsible for propagating action potentials in excitable cells. NaV1.7 plays a crucial role in the human pain signalling pathway and it is an important therapeutic target for treatment of chronic pain. Numerous spider venom peptides have been shown to modulate the activity of NaV channels and these peptides represent a rich source of research tools and therapeutic lead molecules. The aim of this study was to determine the diversity of NaV1.7-active peptides in the venom of an Australian Phlogius sp. tarantula and to characterise their potency and subtype selectivity. We isolated three novel peptides, µ-TRTX-Phlo1a, -Phlo1b and -Phlo2a, that inhibit human NaV1.7 (hNaV1.7). Phlo1a and Phlo1b are 35-residue peptides that differ by one amino acid and belong in NaSpTx family 2. The partial sequence of Phlo2a revealed extensive similarity with ProTx-II from NaSpTx family 3. Phlo1a and Phlo1b inhibit hNaV1.7 with IC50 values of 459 and 360 nM, respectively, with only minor inhibitory activity on rat NaV1.2 and hNaV1.5. Although similarly potent at hNaV1.7 (IC50 333 nM), Phlo2a was less selective, as it also potently inhibited rNaV1.2 and hNaV1.5. All three peptides cause a depolarising shift in the voltage-dependence of hNaV1.7 activation.


Assuntos
Analgésicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Fragmentos de Peptídeos/farmacologia , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Analgésicos/isolamento & purificação , Analgésicos/uso terapêutico , Animais , Austrália , Humanos , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Oócitos/metabolismo , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/uso terapêutico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Transfecção , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Xenopus laevis
19.
Mol Pharmacol ; 88(2): 291-303, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979003

RESUMO

Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, µ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 µM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.


Assuntos
Analgésicos/farmacologia , Dor/tratamento farmacológico , Venenos de Aranha/farmacologia , Aranhas/metabolismo , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , Modelos Animais de Doenças , Células HEK293 , Humanos , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/induzido quimicamente , Venenos de Escorpião , Venenos de Aranha/química , Venenos de Aranha/isolamento & purificação , Aranhas/classificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação
20.
Cent Nerv Syst Agents Med Chem ; 15(2): 74-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25751086

RESUMO

Cnidarians are numbered among the most venomous organisms. Their venoms are contained in intracellular capsules, nematocysts, which inject the content into preys/attackers through an eversion system resembling a syringe needle. Several cnidarian venoms have activity against the nervous system, being neurotoxic, or affect other systems whose functioning is under nerve control. Besides direct damage to nerve cells, the activity on ionic conductance, blockade of neuromuscular junctions, and influence on action potentials and on voltage-gated channels have been described. Therefore, cnidarians can be a useful source of nervous system-targeted compounds which could have, in perspective, a role in the therapy of some nervous system diseases. Following this idea, this article aims to review the existing data about the neuroactive properties of cnidarian venoms and their possible usefulness in tackling some neurological diseases as well as neurodegenerative age-related diseases whose incidence is expected to raise in the next decades owing to the increase of life expectancy.


Assuntos
Analgésicos/isolamento & purificação , Venenos de Cnidários/farmacologia , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/isolamento & purificação , Neurotoxinas/isolamento & purificação , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , Cnidários/química , Venenos de Cnidários/isolamento & purificação , Venenos de Cnidários/toxicidade , Avaliação Pré-Clínica de Medicamentos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Junção Neuromuscular/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Neurotoxinas/toxicidade , Bloqueadores dos Canais de Potássio/isolamento & purificação , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...